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Are scientific hits predictable?
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Success is a collective phenomenon
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Success IS measurable
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A quantitative approach is
provided by publication data

PHYSICAL REVIEW B VOLUME 4, NUMBER 9 1 NOVEMBER 1971

Renormalization Group and Critical Phenomena. '
I. Renormalization Group and the Kadanoff Scaling Picture™®

Kenneth G, Wilson
Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14850
(Received 2 June 1971)

The Kadanoff theory of scaling near the critical point for an Ising ferromagnet is cast in
differential form. The resulting differential equations are an example of the differential
equations of the renormalization group. It is shown that the Widom-Kadanoff scaling laws
arise naturally from these differential equations if the coefficients in the equations are ana-
lytic at the critical point. A generalization of the Kadanoff scaling picture involving an “ir-
relevant” variable is considered; in this case the scaling laws result from the renormaliza-
Han.gyonn ariations onlv if the solution of the eguations goes agvmntaticelt—*- = 20 -2 ~~int.
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More than 100 years of Data

S

> ~500,000 papers since 1893

> All citations among these papers

> ~200,000 unigque authors (after disambiguation)



Kenneth G. Wilson
Nobel in physics in 1982
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Does mobility influence
sclentists’ impact?



Most Nobel Laureates come
from a handful of institutions

: . Total
Rank University (Country) | D
1 Harvard University, USA 34
_________ 2 Stanford Umversity, UsA 20
3 Unmversity of Chuicago, UsA 19 ..
4 Massachusetts Institute of Technology, 18 |
_________ 4 UCBerkeley, UsA 18
_________ 6  Rocketeller University, UsA 17
_________ 6  Unmversity of Cambridge, UK~ 17
_________ 8  Califorma Institute of Technology, USA 16
_________ 9  Columbia Umversity, UsA 16
10 Ponceton Umversity, Usa 12 |
10 Max Planck Institutes, Germany 12

Sources: Huffington Post, 2013-11-02
http://www.nobelprize.org/ (accessed January 2015)
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Rankings are highly correlated

citations h-index papers
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Deville, Wang, Sinatra, Song, Barabdsi, Sci. Rep. 4:4770, (2014)



Sclentists move among
institutions of similar rank
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University rank

Career on the Move
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Movements to higher-ranked
institutions do not induce impact
changes

Harvard University, USA
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Are there patterns of performance?
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Jones and Weinberg, PNAS 108, 47 (2011)

Ericsson et al. Psychological review 100, 363 (1993)
Simonton. Psychological Review 104, 66 (1997)
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Measuring performance

N

Productivity Impact
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There are patterns of productivity
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Sinatra, Wang, Deville, Song, Barabasi, in review (2015)



There are no patterns of impact
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Timing of the the highest impact
paper is random

—o— Data
-0 -Randomized
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Sinatra, Wang, Deville, Song, Barabasi, in review (2015)



lmpact is random
within a scientist’s career



Each paper has the same
probability to be the best one

Frank G. Wilczek
Physics Nobel, 2004

John B. Fenn
Chemistry Nobel, 2002




Each paper has the same
probability to be the best one

Frank G. Wilczek
Physics Nobel, 2004
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We observe regularities when
comparing different scientists

highest impact paper log ¢*

8

O-

4

O
@)
OO
O
OO
OO
O
O
© Mean
| | |
0 1 2 3 4

average impact (logc™ ™)

Sinatra, Wang, Deville, Song, Barabasi, in review (2015)



Individuals have different
impact distributions
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Sinatra, Wang, Deville, Song, Barabasi, in review (2015)



A universal stochastic principle driving
individual impact?




Excellence model untangles
luck from sKill

Sinatra, Wang, Deville, Song, Barabasi, in review (2015)



Excellence model
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Sinatra, Wang, Deville, Song, Barabasi, in review (2015)



We untangle skill and luck

&
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Sinatra, Wang, Deville, Song, Barabasi, in review (2015)



The excellence model predicts the
highest impact work of scientists
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Sinatra, Wang, Deville, Song, Barabasi, in review (2015)



Excellence detects best
Nobel Laureates

Nobel Laureates

N / 7| —m— h—index, 0.93

| —@—total citations Ciot, 0.94

—'=—highest impact cj,, 0.92

—#A— productivity N, 0.71
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Other scientists

Sinatra, Wang, Deville, Song, Barabasi, in review (2015)



What breeds excellence?






Water lilies, 1915






Le dejeuner sur 'herbe, 1865-1866



Claude Monet







Old Worman (oma with Gloves,
Woman With Jewelery) 1901






Portrait of gertrude stein (1906)
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We characterize topics
in scientific careers
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We characterize topics
in scientific careers
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We compare topic heterogeneity
between careers

topic heterogeneity
Entropy Ff 1

# of topics

bow

-

topic focus
conditional entropy H?

Deville, Sinatra, Barabdsi, in preparation (2015)



Kimmo Kaski

Professor of Computational Science, Aalto University School of Science
Computational Science, Statistical Physics, Complexity Science, Complex
Networks, Computational Sociology

Verified email at aalto.fi

Citations per year
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Pradip Dutta

(4 b‘ Professor of Mechanical Engineering, Indian Institute of Science
1 heat transfer, fluid mechanics, energy technologies, thermodynamics, solidification

',
- Verified email at mecheng.iisc.ernet.in
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Citations per year
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H1

Most sclentists are “MONET”

1

number of topic

1.5

1

Ios
O 0

2

H2

Colorcode: # of scientists

Deville, Sinatra, Barabdsi, in preparation (2015)



h-index successful
sclentists are “Picasso”

1

H1

01
number of topic

Colorcode: average h-index

Deville, Sinatra, Barabdsi, in preparation (2015)



Excellence-successful scientists
are both “monet” and “picasso”

1

H1

0
0 number of topic 20

Colorcode: excellence

Deville, Sinatra, Barabdsi, in preparation (2015)



't is not (just) a new indicator, rather it
explains all other indicators

WARNING




Some challenges and open questions

What determines excellence?

— Team
—  Affiliation
— Gender, likability,...

Uncovering laws (unbiased) that drive impact

We need to understand what impact indicators
really mean

Beyond citations: other proxies for
impact (altmetrics)?
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LASZLO BARARBASI PIERRE DEVILLE CHAOMING SONG DASHUN WANG
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